Singular spherical maximal operators on a class of two step nilpotent lie groups

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Singular Spherical Maximal Operators on a Class of Step Two Nilpotent Lie Groups

Let H ∼= R ⋉ R be the Heisenberg group and let μt be the normalized surface measure for the sphere of radius t in R. Consider the maximal function defined by Mf = supt>0 |f ∗ μt|. We prove for n ≥ 2 that M defines an operator bounded on L(H) provided that p > 2n/(2n− 1). This improves an earlier result by Nevo and Thangavelu, and the range for L boundedness is optimal. We also extend the result...

متن کامل

Singular Spherical Maximal Operators on a Class of Two Step Nilpotent Lie Groups

Let H be the Heisenberg group and let μt be the normalized surface measure for the sphere of radius t in R. Consider the maximal function defined by Mf = supt>0 |f ∗μt|. We prove for n ≥ 2 that M defines an operator bounded on L(H) provided that p > 2n/(2n − 1). This improves an earlier result by Nevo and Thangavelu, and the range for L boundedness is optimal. We also extend the result to a mor...

متن کامل

Some Two–Step and Three–Step Nilpotent Lie Groups with Small Automorphism Groups

We construct examples of two-step and three-step nilpotent Lie groups whose automorphism groups are “small” in the sense of either not having a dense orbit for the action on the Lie group, or being nilpotent (the latter being stronger). From the results we also get new examples of compact manifolds covered by two-step simply connected nilpotent Lie groups which do not admit Anosov automorphisms...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Israel Journal of Mathematics

سال: 2004

ISSN: 0021-2172,1565-8511

DOI: 10.1007/bf02772226