Singular spherical maximal operators on a class of two step nilpotent lie groups
نویسندگان
چکیده
منابع مشابه
Singular Spherical Maximal Operators on a Class of Step Two Nilpotent Lie Groups
Let H ∼= R ⋉ R be the Heisenberg group and let μt be the normalized surface measure for the sphere of radius t in R. Consider the maximal function defined by Mf = supt>0 |f ∗ μt|. We prove for n ≥ 2 that M defines an operator bounded on L(H) provided that p > 2n/(2n− 1). This improves an earlier result by Nevo and Thangavelu, and the range for L boundedness is optimal. We also extend the result...
متن کاملSingular Spherical Maximal Operators on a Class of Two Step Nilpotent Lie Groups
Let H be the Heisenberg group and let μt be the normalized surface measure for the sphere of radius t in R. Consider the maximal function defined by Mf = supt>0 |f ∗μt|. We prove for n ≥ 2 that M defines an operator bounded on L(H) provided that p > 2n/(2n − 1). This improves an earlier result by Nevo and Thangavelu, and the range for L boundedness is optimal. We also extend the result to a mor...
متن کاملSINGULAR SPHERICAL MAXIMAL OPERATORS ONA CLASS OF TWO STEP NILPOTENT LIE GROUPSDetlef M uller
متن کامل
Some Two–Step and Three–Step Nilpotent Lie Groups with Small Automorphism Groups
We construct examples of two-step and three-step nilpotent Lie groups whose automorphism groups are “small” in the sense of either not having a dense orbit for the action on the Lie group, or being nilpotent (the latter being stronger). From the results we also get new examples of compact manifolds covered by two-step simply connected nilpotent Lie groups which do not admit Anosov automorphisms...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Israel Journal of Mathematics
سال: 2004
ISSN: 0021-2172,1565-8511
DOI: 10.1007/bf02772226